
In the previous chapter, I introduced Apple’s
Endpoint Security and its noti!cation events.

In this chapter, I move into more advanced
topics, such as muting, mute inversion, and

authorization events.
Muting instructs Endpoint Security to withhold the delivery of certain

events, such as those generated from chatty system processes. Conversely,
mute inversion gives us the ability to create focused tools that, for example,
subscribe solely to events from a speci!c process or only those related to the
access of a few directories. Lastly, Endpoint Security’s authorization capa-
bilities offer a mechanism to prevent undesirable actions altogether.

You’ll !nd the majority of the code snippets presented in this chapter
in the ESPlayground project introduced in Chapter 8. For each topic covered
here, I’ll point to the part of this project where the relevant code resides, as
well as how to execute it via command line arguments.

9
M U T I N G A N D

A U T H O R I Z A T I O N E V E N T S

206!!!Chapter 9

Muting
All event monitoring implementations risk facing an overwhelming deluge
of events. For example, !le I/O events occur constantly as part of normal
system activity, and !le monitors may generate so much data that !nding
events tied to malicious processes becomes quite dif!cult. One solution is to
mute irrelevant processes or paths. For example, you’ll likely want to ignore
!le I/O events involving the temporary directory or originating from cer-
tain chatty, legitimate operating system processes (such as the Spotlight
indexing service), as these events occur almost constantly and are rarely
useful for malware detection.

Luckily for us, Endpoint Security provides a #exible and robust muting
mechanism. Its es_mute_path function will suppress events either from a
speci!ed process or that match a speci!ed path. The function takes three
parameters—a client; a path to a process, directory, or !le; and a type:

es_mute_path(es_client_t* _Nonnull client, const char* _Nonnull path,
es_mute_path_type_t type);

The mute path type can be one of the four values found in the enumer-
ation of type es_mute_path_type_t in ESTypes.h:

typedef enum {
 ES_MUTE_PATH_TYPE_PREFIX,
 ES_MUTE_PATH_TYPE_LITERAL,
 ES_MUTE_PATH_TYPE_TARGET_PREFIX,
 ES_MUTE_PATH_TYPE_TARGET_LITERAL
} es_mute_path_type_t;

The types ending in PREFIX tell Endpoint Security that the path provided
to es_mute_path is a pre!x to a longer path. For example, you could use the
ES_MUTE_PATH_TYPE_TARGET_PREFIX option to mute all !le I/O events originating
from a certain directory. On the other hand, if the mute path type ends in
LITERAL, the path has to match exactly for events to be muted.

Use the initial two values of the enumeration, ES_MUTE_PATH_TYPE_PREFIX
and ES_MUTE_PATH_TYPE_LITERAL, when you want to mute the path of the pro-
cess responsible for triggering the Endpoint Security event. For example,
Listing 9-1 shows a snippet from the mute function (in the ESPlayground
project’s mute.m !le) that instructs Endpoint Security to mute all events
originating from mds_stores, a very noisy Spotlight daemon responsible for
managing macOS’s metadata indexes.

1 #define MDS_STORE "/System/Library/Frameworks/CoreServices.framework/Versions/
A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores"

2 es_mute_path(client, MDS_STORE, ES_MUTE_PATH_TYPE_LITERAL);

Listing 9-1: Muting events from the Spotlight service

Muting and Authorization Events!!!207

After de!ning the path to the mds_store binary 1, we invoke the
es_mute_path API 2, passing it an endpoint client (created previously via a
call to es_new_client), the path to the mds_stores binary, and the ES_MUTE_PATH
_TYPE_LITERAL enumeration value.

If you instead (or also) want to mute the targets of the events (for
example, in a !le monitor, the paths to !les being created or deleted), use
either ES_MUTE _PATH_TYPE_TARGET_PREFIX or ES_MUTE_PATH_TYPE_TARGET_LITERAL.
For instance, if we wanted a !le monitor to mute all !le events involving
the temporary directory associated with the user context under which the
monitor process is running, we’d use the code in Listing 9-2.

1 char tmpDirectory[PATH_MAX] = {0};
realpath([NSTemporaryDirectory() UTF8String], tmpDirectory);

2 es_mute_path(client, tmpDirectory, ES_MUTE_PATH_TYPE_TARGET_PREFIX);

Listing 9-2: Muting all events in the current user’s temporary directory

We retrieve the temporary directory with the NSTemporaryDirectory func-
tion and then resolve any symbolic links in this path (for example, resolving
/var to /private/var) with the realpath function 1. Next, we mute all !le I/O
events whose target paths fall within this directory 2.

Let’s compile and run the ESPlayground project from the terminal with
root privileges. When we launch the Calculator app via Spotlight, it should
print out various Endpoint Security events, such as !le open and close events:

ESPlayground.app/Contents/MacOS/ESPlayground -mute

ES Playground
Executing 'mute' logic

muted process: /System/Library/Frameworks/
CoreServices.framework/Versions/A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores

muted directory: /private/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
file path: /System/Applications/Calculator.app/Contents/MacOS/Calculator

event: ES_EVENT_TYPE_NOTIFY_CLOSE
process: /System/Library/CoreServices/Spotlight.app/Contents/MacOS/Spotlight
file path: /System/Applications/Calculator.app/Contents/MacOS/Calculator

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Applications/Calculator.app/Contents/MacOS/Calculator
file path: /

But because we speci!ed the -mute #ag, we won’t receive any events
originating from the mds_stores daemon or from within the root user’s
temporary directory. We can con!rm this fact by simultaneously running

208!!!Chapter 9

a !le monitor that implements no muting. Notice that this time, we receive
such events:

FileMonitor.app/Contents/MacOS/FileMonitor -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_OPEN",
 "file" : {
 "destination" : "/private/var/folders/zz/zyxvpxvq6csfxvn_n0000000000000/T",
 "process" : {
 "pid" : 540,
 "name" : "mds_stores",
 "path" : "/System/Library/Frameworks/CoreServices.framework/
 Versions/A/Frameworks/Metadata.framework/Versions/A/Support/mds_stores"
 }
 }
 ...
}

Endpoint Security has several other muting-related APIs worth men-
tioning. The es_mute_process function provides another way to mute events
from a speci!c process:

es_return_t
es_mute_process(es_client_t* _Nonnull client, const audit_token_t* _Nonnull audit_token);

As the de!nition shows, the function expects a client and an audit
token of the process to mute. Because it takes an audit token instead of a
path (as with the es_mute_path function), you can mute a speci!c instance of
a running process. For example, you most likely want to mute events that
originate from your own Endpoint Security tool. Using the getAuditToken
function covered in Chapter 1, Listing 9-3 performs such a muting.

NSData* auditToken = getAuditToken(getpid());

es_mute_process(client, auditToken.bytes);

Listing 9-3: An ES client muting itself

Besides muting a process entirely, you can also mute just a subset of its
events via the es_mute_process_events API:

es_return_t es_mute_process_events(es_client_t* _Nonnull client, const audit_token_t*
_Nonnull audit_token, const es_event_type_t* _Nonnull events, size_t event_count);

After passing a client and an audit token of the process whose events
you intend to mute, you should pass an array of events containing the
events to mute, as well as the size of the array.

For each muting API, you’ll !nd a corresponding unmuting function,
such as es_unmute_path and es_unmute_process. Moreover, Endpoint Security
provides several global unmuting functions. For example, es_unmute_all_paths
unmutes all muted paths. You can !nd more details about these functions in
Apple’s Endpoint Security developer documentation.1

Muting and Authorization Events!!!209

Mute Inversion
Mute inversion, a capability added to Endpoint Security in macOS 13, inverts
the logic for for muting, both for processes triggering the events and the
events themselves. This allows you, for example, to subscribe to events for
a very speci!c set of processes, directories, or !les. You’ll !nd it useful for
tasks such as the following:

• Detecting unauthorized access to user directories, perhaps by ransom-
ware attempting to encrypt user !les or stealers attempting to access
authentication tokens or cookies2

• Implementing tamper-resistant mechanisms to protect your security tool3

• Capturing events triggered by the actions of a malware specimen dur-
ing analysis or pro!ling

For example, consider MacStealer, a malware specimen that goes after
user cookies.4 If we decompile its compiled Python code, we can see that it
contains a list of common browsers, such as Chrome and Brave, as well as
logic to extract their cookies:

class Browsers:
def __init__(self, decrypter: object) -> object:
 ...
 self.cookies_path = []
 self.extension_path = []
 ...
 self.cookies = []
 self.decryption_keys = decrypter
 self.appdata = '/Users/*/Library/Application Support'
 self.browsers = {...
 'google-chrome':self.appdata + '/Google/Chrome/',
 ...
 'brave':self.appdata + '/BraveSoftware/Brave-Browser/',
 ...
 }
 ...
def browser_db(self, data, content_type):
 ...
 else:
 if content_type == 'cookies':
 sql = 'select name,encrypted_value,host_key,path,is_secure,..., from cookies'
 keys = ['name', 'encrypted_value', 'host_key', 'path', ..., 'expires_utc']
 ...
 if __name__ == '__main__':
 decrypted = {}
 browsers = Browsers()
 paths = browsers.browser_data()

The code ex!ltrates the collected cookies, giving the malware authors
access to a user’s logged-in accounts. By leveraging mute inversion, we
can subscribe to !le events covering the locations of browser cookies. Any
process that attempts to access browser cookies will trigger these events,

210!!!Chapter 9

including MacStealer, providing a mechanism to detect and thwart its unau-
thorized actions.

Beginning Mute Inversion
To invert muting, invoke the es_invert_muting function, which takes an
Endpoint Security client as well as the mute inversion type:

es_return_t es_invert_muting(es_client_t* _Nonnull client, es_mute_inversion_type_t mute_type);

You can !nd the mute inversion types in the ESTypes.h header !le:

typedef enum {
 ES_MUTE_INVERSION_TYPE_PROCESS,
 ES_MUTE_INVERSION_TYPE_PATH,
 ES_MUTE_INVERSION_TYPE_TARGET_PATH,
 ES_MUTE_INVERSION_TYPE_LAST
} es_mute_inversion_type_t;

The !rst two types allow you to mute-invert a process. The !rst type
should be used when you’re looking to mute-invert a process via its audit
token, for example, via the es_mute_process API. On the other hand, the
second type, ES_MUTE_INVERSION_TYPE_PATH, provides the means to identify the
process to mute-invert by its path. Finally, ES_MUTE_INVERSION_TYPE_TARGET_PATH
should be used when instead you’re looking to mute-invert events related to
the target path, such as a directory.

Mute inversion applies globally across the speci!ed mute inversion type;
that is to say, if you invoked es_invert_muting with the ES_MUTE_INVERSION_TYPE
_PATH type, all muted process paths would unmute. For this reason, it often
makes sense to create a new Endpoint Security client speci!cally for mute
inversion. (While the system imposes a limit on the number of clients, your
program can create at least several dozen of them before causing an ES_NEW
_CLIENT_RESULT_ERR_TOO_MANY_CLIENTS error.) Also worth nothing is that since
muting inversion will only occur for the speci!ed mute inversion type, you
can mix and match mute and mute inversions. For example, you could mute
processes while mute-inverting paths found in the events. This would be
useful in a scenario where you are perhaps building a directory monitor
leveraging mute inversion but want to ignore (mute) events from trusted
system processes.

Mute inversions also impact the default mute set, a handful of paths
to system-critical platform binaries that get muted by default. You can
invoke the es_muted_paths_events function to retrieve a list of all muted paths,
including the default ones. The default mute set aims to protect clients from
deadlocks and timeout panics, so you likely won’t want to generate events for
its paths. To avoid doing so, consider invoking es_unmute_all_paths before
any process-path mute inversions or es_unmute_all_target_paths before any
target-path mute inversions.

Now that you have inverted muting (for example, via the es_invert_muting
API), you can invoke any of the corresponding, previously mentioned mut-
ing APIs, whose muting logic will now be inverted. This is clearly illustrated

Muting and Authorization Events!!!211

in the next section, which makes use of mute inversion to monitor !le
access within a single directory.

Monitoring Directory Access
Listing 9-4 is a snippet of mute inversion code that monitors the opening
of !les in the logged-in user’s Documents directory. You can !nd the full
implementation in the muteInvert function, in the ESPlayground project’s
muteInvert.m !le.

In “Authorization Events” on page 213, we’ll combine this approach with
authorization access, a useful protection mechanism that could, for example,
block ransomware or malware attempting to access sensitive user !les.

NSString* consoleUser =
(__bridge_transfer NSString*)SCDynamicStoreCopyConsoleUser(NULL, NULL, NULL); 1

NSString* docsDirectory =
[NSHomeDirectoryForUser(consoleUser) stringByAppendingPathComponent:@"Documents"];

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_OPEN};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 // Add code here to handle delivered events.
});

es_unmute_all_target_paths(client); 2
es_invert_muting(client, ES_MUTE_INVERSION_TYPE_TARGET_PATH); 3
es_mute_path(client, docsDirectory.UTF8String, ES_MUTE_PATH_TYPE_TARGET_PREFIX); 4

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-4: Monitoring file-open events in the user’s Documents directory

First, we dynamically build the path to the logged-in user’s Documents
directory. Because Endpoint Security code always runs with root privileges,
most APIs that return the current user would simply return the root.
Instead, we make use of the SCDynamicStoreCopyConsoleUser API to get the
name of the user currently logged in to the system 1. Note that the API
isn’t aware of the automatic reference counting (ARC) memory manage-
ment feature, so we add __bridge_transfer, which saves us from having to
manually free the memory containing the user’s name. Next, we invoke the
NSHomeDirectoryForUser function to get the home directory, to which we then
append the path component Documents.

After de!ning the events of interest and creating a new Endpoint
Security client, the code unmutes all target paths 2. Then it invokes
es_invert_muting with the ES_MUTE_INVERSION_TYPE_TARGET_PATH value to invert
muting 3. Next, the code invokes es_mute_path, passing in the document’s
directory 4. Since we’ve inverted muting, this API instructs Endpoint
Security to deliver only events that occur in this directory and ignore all
others. Finally, we invoke es_subscribe with the events of interest to com-
mence the delivery of such events.

212!!!Chapter 9

To complete this example, print out the event, which you’ll recall
gets delivered to the es_handler_block_t callback block speci!ed in the last
parameter to the es_new_client. Listing 9-5 shows an inline implementation.

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 1 es_string_token_t* procPath = &message->process->executable->path;
 2 es_string_token_t* filePath = &message->event.open.file->path;

 3 printf("event: ES_EVENT_TYPE_NOTIFY_OPEN\n");
 printf("process: %.*s\n", (int)procPath->length, procPath->data);
 printf("file path: %.*s\n", (int)filePath->length, filePath->data);
});

Listing 9-5: Printing out a file-open Endpoint Security event

We extract the path to the responsible process. We can always !nd this
process in the message structure passed by reference to the handler block.
To get its path, we check the process structure’s executable member 1. Next,
we extract the path of the !le that the process has attempted to open. For
ES_EVENT_TYPE_NOTIFY_OPEN events, we !nd this path in an es_event_open_t
structure, located in the message structure’s event member 2. After extract-
ing the paths for the responsible process and !le, we print them out 3.

The tool should now detect any access to !les in the Documents direc-
tory. You can test this by running ESPlayground with the -muteinvert #ag.
You’ll see that it displays no Endpoint Security events unless they originate
within Documents. You can trigger such events by either browsing to the
directory via Finder or using the terminal (for example, to list the direc-
tory’s contents via ls):

ESPlayground.app/Contents/MacOS/ESPlayground -muteinvert

ES Playground
Executing 'mute inversion' logic
unmuted all (default) paths
mute (inverted) /Users/Patrick/Documents

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /System/Library/CoreServices/Finder.app/Contents/MacOS/Finder
file path: /Users/Patrick/Documents

event: ES_EVENT_TYPE_NOTIFY_OPEN
process: /bin/ls
file path: /Users/Patrick/Documents

If we extended the example code to also monitor other directories,
such as those where browsers store their cookies, we’d easily detect stealers
such as MacStealer! In the next section, I’ll cover the powerful authoriza-
tion event type.

Muting and Authorization Events!!!213

Authorization Events
Unlike noti!cation-based events, which an Endpoint Security client receives
after some activity occurs on the system, authorization events allow a client
to examine and then allow or deny events before they’ve completed. This fea-
ture provides a mechanism for building security tools capable of proactively
detecting and thwarting malicious activity. Although working with authoriza-
tion events involves similar concepts as working with noti!cation events, there
are some important differences. To explore these, let’s dive into the code.

Conceptually, our goal is simple: design a tool capable of blocking the
execution of non-notarized programs originating from the internet. As
we’ve seen, the overwhelming majority of macOS malware isn’t notarized,
while legitimate software almost always is, making this a powerful approach to
stopping malware. When a user attempts to launch an item downloaded from
the internet, we’ll intercept this execution before it’s allowed, then check its
notarization status. We’ll allow validly notarized items and block all others.

At the time of this writing, recent versions of macOS attempt to
implement this same check, but they do so less rigorously. First, up until
macOS 15, if the user right-clicks a download item, the operating system
still provides the option to run non-notarized items. Malware authors are,
of course, well aware of this loophole and often leverage it to get their
untrusted malware to execute. The proli!c macOS adware Shlayer and
many macOS stealers are fond of this trick. Moreover, Apple’s implementa-
tion to prevent non-notarized code on macOS has been rife with exploit-
able bugs (such as CVE-2021-30657 and CVE-2021-30853), rendering it
essentially useless.5

I implemented a notarization check in one of Objective-See’s most pop-
ular tools, BlockBlock, discussed in detail in Chapter 11. When run in nota-
rization mode, this tool blocks any downloaded binary that isn’t notarized,
including malware that attempts to exploit CVE-2021-30657 and CVE-2021-
30853, well before patches from Apple were available.6 We’ll roughly follow
BlockBlock’s approach here. Note that in your own implementation, you
might take a less draconian approach; for example, rather than blocking all
non-notarized items, you might block only those that users may have been
tricked into running. (In macOS 15, Apple introduced the ES_EVENT_TYPE
_NOTIFY_GATEKEEPER_USER_OVERRIDE event you may be able to leverage to detect
this.) Or you might collect non-notarized binaries for external analysis or
subject them to other heuristics mentioned in this book before deciding
whether to prevent their execution.

Creating a Client and Subscribing to Events
In this section, we subscribe to Endpoint Security authorization events before
discussing how to respond to such events in a timely manner. You can !nd a
full implementation of the code mentioned in this section in the authorization
function, found in the ESPlayground project’s authorization.m !le.

As when working with noti!cation events, we start by creating an
Endpoint Security client, specify an es_handler_block_t block, and subscribe
to events of interest (Listing 9-6).

214!!!Chapter 9

es_client_t* client = NULL;
1 es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_EXEC};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 // Add logic to allow or block processes.
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-6: Subscribing to authorization events for process executions

To block non-notarized processes, we need to subscribe to only a single
authorization event: ES_EVENT_TYPE_AUTH_EXEC 1. Apple’s developer documen-
tation succinctly describes it as the event type for any process that “requests
permission from the operating system to execute another image.”7 Once
the call to es_subscribe returns, Endpoint Security will invoke our code any-
time a new process is about to be executed.

Next, we must respond to the operating system with a decision to either
authorize or deny the delivered event. To respond, we use the es_respond_auth
_result API, de!ned as follows in ESClient.h:

es_respond_result_t es_respond_auth_result(es_client_t* _Nonnull client,
const es_message_t* _Nonnull message, es_auth_result_t result, bool cache);

The function takes the client that received the message, the deliv-
ered message, the authorization result, and a #ag indicating whether the
results should be cached. To allow a message, invoke this function with an
es_auth _result_t value of ES_AUTH_RESULT_ALLOW. To deny the message, specify a
value of ES_AUTH_RESULT_DENY. If you pass in true for the cache #ag, Endpoint
Security will cache the authorization decision, meaning future events from
the same process may not trigger additional authorization events. This,
of course, has performance bene!ts, though some important nuances to
be aware of. First, imagine that you’ve cached an authorization decision
for a process execution event. Even if that process is executed with differ-
ent arguments, no additional authorization event will be generated, which
could be problematic if a detection heuristic makes use of process argu-
ments. Second, be aware that the cache is global for the system, meaning
if any other Endpoint Security client does not cache an event, you’ll still
receive it (even if you’ve previously cached it).

Let’s build upon the code in Listing 9-6 to extract the path of the pro-
cess about to be spawned and then determine how to respond. For simplicity,
we’ll just allow all processes in this example (Listing 9-7).

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_EXEC};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 1 es_process_t* process = message->event.exec.target;
 2 es_string_token_t* procPath = &process->executable->path;

Muting and Authorization Events!!!215

 printf("\nevent: ES_EVENT_TYPE_AUTH_EXEC\n");
 printf("process: %.*s\n", (int)procPath->length, procPath->data);

 3 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-7: Handling process authorization events

Within the callback block, we extract information about the process
that is about to be spawned. First, we get a pointer to its es_process_t struc-
ture, found with the es_event_exec_t structure in the Endpoint Security
message 1. From this, we extract just its path 2 and print it out. Finally,
we invoke the es_respond_auth_result API with ES_AUTH_RESULT_ALLOW to tell the
Endpoint Security subsystem to authorize that process’s execution 3.

N O T E In ESTypes.h, Apple speci!es an important but easy-to-overlook nuance: for !le
authorization events (ES_EVENT_TYPE_AUTH_OPEN) only, your code must provide an
authorization response via the es_respond_flags_result function, not via the
es_respond_auth_result function. The same header !le notes that when invoking the
es_respond_flags_result function, you should pass a value of 0 to deny the event
and UINT32_MAX to allow it.

Let’s run ESPlayground with the -authorization #ag and then launch the
Calculator application:

ESPlayground.app/Contents/MacOS/ESPlayground -authorization

ES Playground
Executing 'authorization' logic

event: ES_EVENT_TYPE_AUTH_EXEC
process: /System/Applications/Calculator.app/Contents/MacOS/Calculator

We see the authorization event, and because we’re allowing all pro-
cesses, Endpoint Security doesn’t block it.

Meeting Message Deadlines
There is one very important caveat to responding to authorization events: if
we miss the response deadline, Endpoint Security will allow the event and
forcefully kill our client.

Exception Type: EXC_CRASH (SIGKILL)
Exception Codes: 0x0000000000000000, 0x0000000000000000
Termination Reason: Namespace ENDPOINTSECURITY, Code 2 EndpointSecurity client
terminated because it failed to respond to a message before its deadline

216!!!Chapter 9

From a system and usability point of view, this approach makes sense.
If the program takes too long to respond, the entire system could lag or,
worse, hang.

The es_message_t structure has a !eld named deadline that tells us
exactly how long we have to respond to the message. The header !le also
notes that the deadline can vary substantially between each message; thus,
our code should inspect each message’s deadline accordingly.

Let’s look at how BlockBlock’s process monitoring logic handles dead-
lines.8 Deadlines are especially important for this tool, as it waits for the
user’s input before authorizing or denying the non-notarized process,
meaning it faces a very real possibility of hitting the deadline (Listing 9-8).

1 dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
2 uint64_t deadline = message->deadline - mach_absolute_time();

3 dispatch_async(dispatch_get_global_queue(QOS_CLASS_DEFAULT, 0), ^{
 4 if(0 != dispatch_semaphore_wait(semaphore,
 dispatch_time(DISPATCH_TIME_NOW, machTimeToNanoseconds(deadline)
 - (1 * NSEC_PER_SEC)))) {
 5 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
 }
});

Listing 9-8: BlockBlock’s handling of Endpoint Security message deadlines

First, the code creates a semaphore 1 and computes the deadline 2.
Because Endpoint Security reports the message deadline in absolute time,
the code subtracts the current time from it to !gure out how long it has left.
Next, the code submits a block to execute asynchronously in a background
queue 3, where it delivers the message to the user and, in another asyn-
chronous block, waits for the response. I’ve omitted this part of the code to
keep things concise, as its speci!cs aren’t relevant.

Performing time-consuming processing in another asynchronous queue
allows the code to signal the semaphore once the processing is complete
and avoid the timeout, which the code sets up next 4. Once BlockBlock
has delivered the message to the user and is awaiting a response, it invokes
the dispatch_semaphore_wait function to wait on the semaphore until a cer-
tain time. You probably guessed it: the function waits until right before
the message’s deadline is hit. If a timeout occurs (meaning a user response
didn’t signal the semaphore and the message deadline is about to be hit),
the code has no choice but to respond, which it does by defaulting to autho-
rizing the event 5.

Note that the Mach absolute time value returned by a function can vary
between processes, depending on whether they’re native or translated. To
maintain consistency, you should apply a timebase, which you can retrieve
using the mach_timebase_info function. Apple documentation illustrates this
in the following code, which converts a mach time value to nanoseconds
using timebase information:

Muting and Authorization Events!!!217

uint64_t MachTimeToNanoseconds(uint64_t machTime) {
 uint64_t nanoseconds = 0;
 static mach_timebase_info_data_t sTimebase;
 if (sTimebase.denom == 0)
 (void)mach_timebase_info(&sTimebase);

 nanoseconds = ((machTime * sTimebase.numer) / sTimebase.denom);
 return nanoseconds;
}

You might have noticed that the code in Listing 9-8 leveraged this func-
tion when computing the wait time for the dispatch semaphore.

N O T E If you’re asynchronously processing Endpoint Security messages, such as when asking
a user for input and awaiting their response, you must retain the message via the
es_retain_message API. Once you’re done with the message, you must release it with a
call to es_release_message.

Now that you’ve seen how to respond to Endpoint Security authoriza-
tion events while taking deadlines into account, you’re ready to look at the
last piece of the “blocking non-notarized processes” puzzle.

Checking Binary Origins
Once we’ve registered for ES_EVENT_TYPE_AUTH_EXEC events, the system will
invoke the es_handler_block_t block passed to the es_new_client function
before each new process is spawned. In this block, we’ll add logic to deny
non-notarized processes from remote locations only. That last part is impor-
tant, as local platform binaries aren’t notarized but should, of course, be
allowed. Along the same lines, you may want to consider allowing appli-
cations from the of!cial Mac App Store. Though not notarized, they’ve
passed a similar and (hopefully) stringent Apple review process.

To determine if a process’s binary originated from a remote location,
we’ll defer to macOS by checking whether the binary has been translocated
or has the com.apple.quarantine extended attribute. If either condition is true,
the operating system has marked the item as originating from a remote
source. Translocation is a security mitigation built into recent versions of
macOS designed to thwart relative dynamic library hijacking attacks.9

In short, when a user attempts to open an executable item from a
downloaded disk image or ZIP !le, macOS will !rst create a random read-
only mount containing a copy of the item, then launch this copy. If we can
programmatically determine that a process about to be executed has been
translocated, we know we should subject it to a notarization check.

To check if an item has been translocated, we can invoke the private
SecTranslocateIsTranslocatedURL API. This function takes several parameters,
including the path of the item to check and a pointer to a Boolean #ag that
macOS will set to true if it has translocated the item. Because the API is
private, we must dynamically resolve it before we can invoke it. The code in
Listing 9-9 does both tasks.10

218!!!Chapter 9

#import <dlfcn.h>
BOOL isTranslocated(NSString* path) {
 BOOL isTranslocated = NO;
 void* handle = dlopen(
 "/System/Library/Frameworks/Security.framework/Security", RTLD_LAZY); 1

 BOOL (*SecTranslocateIsTranslocatedURL)(CFURLRef path, bool* isTranslocated,
 CFErrorRef* __nullable error) = dlsym(handle,"SecTranslocateIsTranslocatedURL"); 2

 SecTranslocateIsTranslocatedURL((__bridge CFURLRef)([NSURL fileURLWithPath:path]),
 &isTranslocated, NULL); 3

 return isTranslocated;
}

Listing 9-9: A helper function that uses private APIs to determine whether an item has been translocated

The code loads the Security framework, which contains the SecTrans
locateIs TranslocatedURL API 1. Once it’s loaded, the code resolves the API
via dlsym 2, then invokes the function with the path of the item to check 3.
When the API returns, it will set the second parameter to the result of the
translocation check.

Another way to check whether an item has a remote origin is via the
com.apple.quarantine extended attribute, added either by the application
responsible for downloading the item or by the operating system directly, if
the application has set LSFileQuarantineEnabled = 1 in its Info.plist !le. You can
programmatically retrieve the value of an item’s extended attribute using
various private qtn_file_* APIs found in /usr/lib/system/libquarantine.dylib,
though you must !rst dynamically resolve these functions. Invoke them in
the following manner:

 1. Invoke qtn_file_alloc to allocate a _qtn_file structure.
 2. Invoke the qtn_file_init_with_path API with the _qtn_file pointer and

the path of the item whose quarantine attributes you wish to retrieve. If
this function returns QTN_NOT_QUARANTINED (-1), the item isn’t quarantined.

 3. Invoke the qtn_file_get_flags API with the _qtn_file pointer to retrieve
the actual value of the com.apple.quarantine extended attribute.

 4. If the qtn_file_init_with_path function didn’t return QTN_NOT_QUARANTINED,
you’ll know that the item is quarantined, but you may want to check
whether a user previously approved the !le. You can determine this by
checking the value returned by qtn_file_get_flags, where the QTN_FLAG
_USER_APPROVED (0x0040) bit may be set.

 5. Make sure to free the _qtn_file structure by calling qtn_file_free.

In several cases, macOS didn’t appropriately classify nonlocal items as
having originated from a remote source. For example, in CVE-2023-27951,
the operating system failed to apply the com.apple.quarantine extended
attribute. In production code, you might therefore want to take a more
comprehensive approach to determining a binary’s origins. For instance,

Muting and Authorization Events!!!219

you could create a !le monitor to detect binary downloads and then subject
these binaries to the notarization checks, or just block any nonplatform
binary that isn’t notarized. And, yes, malware (once it’s off and running)
may remove the quarantine extended attribute from other components it
has downloaded prior to their execution to potentially bypass macOS or
BlockBlock checks. As such, you may also want to subscribe to the ES_EVENT
_TYPE_AUTH_DELETEEXTATTR Endpoint Security event, which will be able to
detect and prevent the removal of the quarantine attribute.

Now that we can determine whether a process originated from a
remote source, we must check whether the binary backing the process
is notarized. As you saw in Chapter 1, this is as easy as invoking the
SecStaticCodeCheckValidity API with the appropriate requirement string.

If BlockBlock ascertains that the process about to be executed is from a
remote source and not notarized, it will alert the user to request their input.
If the user decides that the process is, for example, untrustworthy or unrec-
ognized, BlockBlock will invoke the function in Listing 9-10 to block it.

-(BOOL)block:(Event*)event {
 BOOL blocked = NO;

 if(YES != (blocked = [self respond:event action:ES_AUTH_RESULT_DENY])) {
 os_log_error(logHandle, "ERROR: failed to block %{public}@", event.process.name);
 }

 return blocked;
}

Listing 9-10: Blocking untrustworthy processes

It invokes the respond:action: method with the ES_AUTH_RESULT_DENY
constant. If we look at this method, we see that, at its core, it just invokes
es_respond_auth_result, passing along the speci!ed allow or deny action to
the Endpoint Security subsystem. Also, as true is passed in for the cache
#ag, subsequent executions of the same process will not generate addi-
tional authorization events, thus providing a noticeable performance boost
(Listing 9-11).

-(BOOL)respond:(Event*)event action:(es_auth_result_t)action {
 ...
 result = es_respond_auth_result(event.esClient, event.esMessage, action, true);
 ...
}

Listing 9-11: Passing Endpoint Security the action to take

For a full implementation that blocks non-notarized processes via
Endpoint Security, see BlockBlock’s process plug-in.11

Blocking Background Task Management Bypasses
Let’s consider another example that uses Endpoint Security authorization
events to detect malware, this time by focusing on attempts to leverage

220!!!Chapter 9

exploits that bypass built-in macOS security mechanisms. While the use
of these exploits isn’t yet widespread, the inclusion of new security mecha-
nisms in macOS has increasingly forced malware to employ new techniques
to achieve their malicious objectives, so monitoring for these exploits may
aid your detections.

In Chapter 5, I discussed macOS’s new Background Task Management
(BTM) database, which monitors for persistent items, generates alerts for
them, and globally tracks their behavior. BTM is problematic for malware
hoping to persist, because users will now receive an alert when the mal-
ware gets installed. For example, Figure 9-1 shows the BTM alert that users
receive when malware known as DazzleSpy persistently installs itself as a
binary named softwareupdate.

Figure 9-1: A BTM alert showing that a binary named
softwareupdate has been persistently installed

Luckily for the malware, my research into BTM revealed that Apple’s
original implementation was easy to subvert in several ways, preventing
this alert. This section details two such bypasses and shows how to lever-
age Endpoint Security to detect and block these subversions. Note that I
informed Apple about these issues, and, at least in macOS 15 (and perhaps
on earlier versions of macOS), they appear to have been !xed. Even so, you
could adapt the code in this section to detect other local exploits.

Manual Database Resets
The !rst method of bypassing BTM was incredibly simple. Recall that
Chapter 5 discussed sfltool, which ships with macOS and allows users to
interface with the BTM database. One of its command line options, resetbtm,
will clear the database, causing it to be rebuilt. Once this command is run,
however, the system won’t deliver subsequent BTM alerts until it reboots,
even though items can still persist.

Thus, malware wanting to avoid generating BTM alerts could simply
execute sfltool with the resetbtm command before executing its persis-
tence code. The technique has yet to be observed in the wild but is easy to
exploit, as shown in the following log message, generated after a manual
database reset. These message shows that while the BTM daemon detected
DazzleSpy’s persistent install, it decided not to post an advisory alert:

% log stream
backgroundtaskmanagementd: registerLaunchItem: result=no error, new item
disposition=[enabled, allowed, visible, not notified],
identifier=com.apple.softwareupdate,

Muting and Authorization Events!!!221

url=file:///Users/User/Library/LaunchAgents/com.apple.softwareupdate.plist
backgroundtaskmanagementd: should post advisory=false for uid=501, id=
6ED3BEBC-8D60-45ED-8BCC-E0163A8AA806, item=softwareupdate

Under normal circumstances, users have no reason to reset the BTM
database. So, we can thwart this exploit by subscribing to Endpoint Security
process events and blocking the spawning of sfltool when it is executed
with the resetbtm argument.

To detect the execution of processes, including sfltool, we can register
for the ES_EVENT_TYPE_NOTIFY_EXEC event discussed in Chapter 8. We can access
the process’s path via the es_process_t process structure and extract its argu-
ments with the es_exec_arg_count and es_exec_arg helper functions. Once
you’ve extracted the path and arguments, simple string comparisons should
tell you if the reported process event is a result of sfltool spawned with the
resetbtm argument.

Of course, you’ll likely want to block these events, which you can do by
registering for ES_EVENT_TYPE_AUTH_EXEC. This event’s callback will be invoked
with an Endpoint Security message containing a pointer to an es_process_t
structure. From this, you can extract both the path and the arguments of
the process about to be spawned, then block the spawning by invoking the
es_respond_auth_result function with a value of ES_AUTH_RESULT_DENY.

Stop Signals
While researching the BTM subsystem, I came across another trivial way
to bypass its alerts.12 In short, malware could easily send a stop (SIGSTOP)
signal to the BTM agent responsible for displaying the persistence advisory
message to the user. Once this component halted, the malware could per-
sist without the user being alerted. To detect and block this bypass, we can
lean on Endpoint Security once again. As it’s extremely unlikely that a user
would send a SIGSTOP signal to the BTM agent under normal circumstances,
we can assume this event is malware attempting to subset the subsystem.

The year following my presentation, researchers at Sentinel One uncov-
ered malware taking a similar (albeit less elegant) approach. In their report,13
the researchers noted that the malicious code would continually send a kill
signal to macOS’s Noti!cation Center process to block the BTM’s persis-
tence advisory message, which the system would normally display when the
malware persisted.

We can detect signals with the ES_EVENT_TYPE_NOTIFY_SIGNAL event or, bet-
ter yet, block signals altogether with the corresponding authorization event,
ES_EVENT_TYPE_AUTH_SIGNAL. In Listing 9-12, we focus on the latter task.

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_SIGNAL};

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 int signal = message->event.signal.sig; 1
 es_process_t* sourceProcess = message->process; 2
 es_process_t* targetProcess = message->event.signal.target; 3

222!!!Chapter 9

 // Add code to check if signal is a SIGSTOP or SIGKILL being sent to a process
 // involved in showing user notification alerts.

});

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-12: Subscribing to authorization events for signal deliveries

Whenever a process attempts to send a signal, Endpoint Security will
invoke the callback with a message containing an es_event_signal_t structure.
The code extracts the type of signal 1, as well as the source 2 and target
processes 3.

We can check whether the signal is a SIGSTOP or SIGKILL and whether
the process that would receive the signal is either the BTM agent or the
Noti!cation Center. If so, we simply deny the signal delivery by invoking
es_respond_auth_result with the ES_AUTH_RESULT_DENY value (Listing 9-13).

if((signal == SIGSTOP) || (signal == SIGKILL)) {
 pid_t targetPID = audit_token_to_pid(targetProcess->audit_token);

 if((targetPID == btmAgentPID) || (targetPID == notificationCenterPID)) {
 es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
 }
}

Listing 9-13: Denying suspicious SIGSTOP or SIGKILL signals

Note that elsewhere in your code, you should probably look up and
save the process ID for the BTM agent and Noti!cation Center process,
as you wouldn’t want to look it up each time a signal is delivered. You’d
also likely want to log a message that includes information about the
source process attempting to send the suspicious signal or else collect it for
further examination.

If you implement this code, compile it, run it, and then manually
attempt to subvert the noti!cations from the BTM subsystem by stopping
the agent, your actions should now fail:

% pgrep BackgroundTaskManagementAgent
590

% kill -SIGSTOP 590
kill: kill 590 failed: operation not permitted

In the terminal, we get the process ID of the BTM agent (590, in this
instance). Then we use the kill command to send a SIGSTOP signal to the
agent. This will trigger the delivery of an ES_EVENT_TYPE_AUTH_SIGNAL event to
our program, which will deny it, resulting in the “operation not permitted”
message.

Muting and Authorization Events!!!223

Building a File Protector
I’ll wrap up the discussion of the Endpoint Security framework by develop-
ing a proof-of-concept !le protector. You can !nd its full implementation in
the protect function, in the ESPlayground project’s protect.m !le.

Our code will monitor a speci!c directory (for example, the user’s
home directory or the directory containing browser cookies) and allow only
authorized processes to access it. Whenever a process attempts to access a
!le in the directory, Endpoint Security will trigger an authorization event,
giving our code an opportunity to closely examine the process and decide
whether to allow it. In this example, we’ll allow only platform and notarized
binaries and block the rest.

This !le protector is conceptually similar to Apple’s Transparency,
Consent, and Control (TCC), but it adds another level of protection. After
all, users may naively grant TCC permissions to malware, making previously
protected !les accessible, and malware often exploits or bypasses TCC itself,
as in the case of the XCSSET malware.14 Finally, you may want to provide
authorized access (and detect unauthorized access) to !les located outside
TCC’s protected directories, such as the cookies !les for certain third-party
browsers.

Earlier in this chapter, I discussed monitoring the logged-in user’s
Documents directory via a notify event. The code in this section is similar,
except it covers the user’s entire home directory and extends the list of events
of interest to also include those related to attempted !le deletions. Most
notably, this code leverages Endpoint Security authorization events to proac-
tively block untrusted access. As usual, we’ll start by specifying the Endpoint
Security events of interest, creating an Endpoint Security client, setting up
muting inversion, and !nally subscribing to the events (Listing 9-14).

NSString* consoleUser =
(__bridge_transfer NSString*)SCDynamicStoreCopyConsoleUser(NULL, NULL, NULL);

NSString* homeDirectory = NSHomeDirectoryForUser(consoleUser);

es_client_t* client = NULL;
es_event_type_t events[] = {ES_EVENT_TYPE_AUTH_OPEN, ES_EVENT_TYPE_AUTH_UNLINK}; 1

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 // Add code here to implement logic to examine process and respond to event.
});

es_unmute_all_target_paths(client); 2
es_invert_muting(client, ES_MUTE_INVERSION_TYPE_TARGET_PATH);
es_mute_path(client, homeDirectory.UTF8String, ES_MUTE_PATH_TYPE_TARGET_PREFIX); 3

es_subscribe(client, events, sizeof(events)/sizeof(events[0]));

Listing 9-14: Setting up an Endpoint Security client to authorize file access

224!!!Chapter 9

Several Endpoint Security authorization events relate to !le access.
Here, we use ES_EVENT_TYPE_AUTH_OPEN and ES_EVENT_TYPE_AUTH_UNLINK 1, which
give us the ability to authorize programs that attempt to open or delete
!les. The former event can detect a range of malware with either ransom-
ware or stealer capabilities, while the latter event could perhaps detect and
prevent malware with wiper capabilities that might try to delete or wipe
important !les.

After creating a new Endpoint Security client (whose handler block
we’ll write shortly) 2, the code sets up muting inversion 3, given that we’re
interested only in events related to the directory we’re about to specify. It
dynamically builds a path to the logged-in user’s home directory, then
invokes the es_mute_path API. Because we’ve inverted muting, this API tells
the Endpoint Security subsystem to deliver events that occur within the
speci!ed path only. After the code calls es_subscribe, Endpoint Security will
start delivering events by executing the handler block speci!ed in the call
to the es_new_client function.

How might we implement such a block? To keep things simple, let’s !rst
assume we’ll allow any access (Listing 9-15).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 switch(message->event_type) {
 case ES_EVENT_TYPE_AUTH_OPEN:
 es_respond_flags_result(client, message, UINT32_MAX, false); 1
 break;
 case ES_EVENT_TYPE_AUTH_UNLINK:
 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false); 2
 break;
 ...
 }
});

Listing 9-15: Allowing all file accesses

Recall that for ES_EVENT_TYPE_AUTH_OPEN events, Apple documentation
states that we have to respond with the es_respond_flags_result function 1.
To tell the Endpoint Security subsystem to allow the event, we invoke this
function with UINT32_MAX. For the ES_EVENT_TYPE_AUTH_UNLINK event, we respond
using es_respond_auth_result, as usual 2.

On the #ip side, Listing 9-16 shows the code to deny all !le opens or
deletions in the directory.

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 switch(message->event_type) {
 case ES_EVENT_TYPE_AUTH_OPEN:
 es_respond_flags_result(client, message, 0, false); 1
 break;
 case ES_EVENT_TYPE_AUTH_UNLINK:

Muting and Authorization Events!!!225

 es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false); 2
 break;
 ...
 }
});

Listing 9-16: Denying all file accesses

The only changes from the code to allow all events is that we now call
the es_respond_flags_result function 1 with 0 as its third parameter and
pass es_respond_auth_result the value ES_AUTH_RESULT_DENY 2.

Let’s expand this code to extract the path of the process responsible
for the event, as well as the path of the !le the process is trying to open or
delete (Listing 9-17).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 es_string_token_t* filePath = NULL;
 es_string_token_t* procPath = &message->process->executable->path; 1

 switch(message->event_type) {
 case ES_EVENT_TYPE_AUTH_OPEN:
 filePath = &message->event.open.file->path; 2
 es_respond_flags_result(client, message, 0, false);
 break;
 case ES_EVENT_TYPE_AUTH_UNLINK:
 filePath = &message->event.unlink.target->path; 3
 es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
 break;
 ...
 }
});

Listing 9-17: Extracting process paths and filepaths

We can !nd the responsible process’s path in the process member of
the message structure for any Endpoint Security event 1, but other infor-
mation is event speci!c. Thus, we extract the !le in the handler for each
event type. For ES_EVENT_TYPE_AUTH_OPEN events, we !nd it in an es_event
_open_t structure 2, and for ES_EVENT_TYPE_AUTH_UNLINK events, it lives in an
es_event_unlink_t structure 3.

Now we should allow or deny !le openings and deletions based on
some rules, depending on what we’re attempting to protect. Recall that the
MacStealer malware attempts to steal browser cookies. Generally speaking,
no third-party process other than the browser should access its cookies.
Thus, you may simply want to implement a deny rule with an exception to
allow the browser itself. Via the process ID, path, or, better yet, code signing
information, it should be easy to identify whether the browser is the respon-
sible process.

If you’re protecting !les in the user’s home directory, this kind of “deny
all with exceptions” approach would likely impact the usability of the system.
Thus, you may want to use heuristics, such as authorizing only notarized appli-
cations, those from the App Store, or platform binaries. However, malware

226!!!Chapter 9

sometimes delegates actions to shell commands, which are platform binaries,
so you’ll likely want to examine the process hierarchy of the responsible pro-
cess to make sure it’s not being abused in malicious ways.

In this example, we’ll keep things simple by allowing only platform or
notarized binaries to access the current user’s home directory (Listing 9-18).

es_new_client(&client, ^(es_client_t* client, const es_message_t* message) {
 es_string_token_t* filePath = NULL;
 es_string_token_t* procPath = &message->process->executable->path;

 BOOL isTrusted = ((YES == message->process->is_platform_binary) ||
 (YES == isNotarized(message->process)));

 switch(message->event_type) {
 case ES_EVENT_TYPE_AUTH_OPEN:
 filePath = &message->event.open.file->path;
 printf("\nevent: ES_EVENT_TYPE_AUTH_OPEN\n");
 printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
 printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
 if(YES == isTrusted) {
 printf("process is trusted, so will allow event\n");
 es_respond_flags_result(client, message, UINT32_MAX, false);
 } else {
 printf("process is *not* trusted, so will deny event\n");
 es_respond_flags_result(client, message, 0, false);
 }
 break;

 case ES_EVENT_TYPE_AUTH_UNLINK:
 filePath = &message->event.unlink.target->path;
 printf("\nevent: ES_EVENT_TYPE_AUTH_UNLINK\n");
 printf("responsible process: %.*s\n", (int)procPath->length, procPath->data);
 printf("target file path: %.*s\n", (int)filePath->length, filePath->data);
 if(YES == isTrusted) {
 printf("process is trusted, so will allow event\n");
 es_respond_auth_result(client, message, ES_AUTH_RESULT_ALLOW, false);
 } else {
 printf("process is *not* trusted, so will deny event\n");
 es_respond_auth_result(client, message, ES_AUTH_RESULT_DENY, false);
 }
 break;
 ...
 }
});

Listing 9-18: Granting file access for platform and notarized processes only

We check whether the responsible process either is a platform binary or
has been notarized. Checking whether a process is a platform binary is as
easy as checking the is_platform_binary member of the process structure found
in the delivered Endpoint Security message. In Chapter 3, we used Apple’s
code signing APIs to !gure out whether a process is notarized; we won’t cover

Muting and Authorization Events!!!227

this process again here, except to note that we’ve created a simple helper
function named isNotarized that uses the responsible process’s audit token to
check its notarization status. (If you’re interested in seeing the full implemen-
tation of this function, see the protect.m !le in the ESPlayground project.)

It’s also worth pointing out that the logical OR operator will short-circuit
if the !rst condition is true, so we put the platform binary check !rst.
Because it’s a simple check against a Boolean value in a structure, it’s less
computationally intensive than a full notarization check, so we perform the
more ef!cient check !rst and perform the second check only if needed.

Let’s compile the ESPlayground project and run it with the -protect #ag
to trigger this logic. The tool detects the use of built-in macOS commands
to examine the home directory and delete a !le within the Documents direc-
tory but still allows the actions:

ESPlayground.app/Contents/MacOS/ESPlayground -protect

ES Playground
Executing 'protect' logic
protecting directory: /Users/Patrick

event: ES_EVENT_TYPE_AUTH_OPEN
responsible process: /bin/ls
target file path: /Users/Patrick
process is trusted, so will allow event

event: ES_EVENT_TYPE_AUTH_UNLINK
responsible process: /bin/rm
target file path: /Users/Patrick/Documents/deleteMe.doc
process is trusted, so will allow event

Now consider WindTail, a persistent cyber-espionage implant that seeks
to enumerate and ex!ltrate !les in the user’s Documents directory. If we install
it in a virtual machine, we can see the malware (called Final_Presentation.app)
attempts to enumerate the !les in the user’s documents directory. We detect
this access, and because WindTail’s binary (called usrnode in this example)
isn’t trusted, we block access to the directory:

ESPlayground.app/Contents/MacOS/ESPlayground -protect

ES Playground
Executing 'protect' logic
protecting directory: /Users/User

event: ES_EVENT_TYPE_AUTH_OPEN
responsible process: /Users/User/Library/Final_Presentation.app/Contents/MacOS/usrnode
target file path: /Users/User/Documents
process is *not* trusted, so will deny event

It’s hard to overstate the importance of Endpoint Security for building
tools capable of detecting and protecting against Mac malware. In recent

228!!!Chapter 9

years, Apple has added more events (such as ES_EVENT_TYPE_NOTIFY_XP_MALWARE
_DETECTED in macOS 13 and ES_EVENT_TYPE_NOTIFY_GATEKEEPER_USER_OVERRIDE
in macOS 15), and powerful capabilities to the framework, so when
building any security tool, using Endpoint Security should be your !rst
consideration.

Conclusion
In this chapter, I covered advanced Endpoint Security topics, including
muting, inverted muting, and authorization events. The examples showed
you how to use these capabilities to build tools capable of detecting malware
when it performs unauthorized actions, as well as proactively thwarting the
action in the !rst place.

This chapter wraps up Part II of this book, dedicated to topics of real-
time monitoring capabilities. Part III will put together the many topics
covered in Parts I and II as we explore the internals of Objective-See’s most
popular macOS malware detection tools.

Notes
 1. See “Client,” Apple Developer Documentation, https://developer.apple.com/

documentation/endpointsecurity/client.

 2. Pete Markowsky (@PeteMarkowsky), “A small list of things you can do
with this. 1. lockdown access to your SAAS bearer tokens to speci!c
apps . . . ,” X, May 2, 2023, https://x.com/PeteMarkowsky/status/16534539518
39109133.

 3. See https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8
efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance
.mm#L15.

 4. Shilpesh Trivedi, “MacStealer: Unveiling a Newly Identi!ed MacOS-
Based Stealer Malware,” Uptycs, March 24, 2023, https://www.uptycs.com/
blog/macstealer-command-and-control-c2-malware.

 5. You can read more about these notarization bypass #aws in Patrick
Wardle, “All Your Macs Are Belong to Us,” Objective-See, April 26,
2021, https://objective-see.org/blog/blog_0x64.html, and in Patrick Wardle,
“Where’s the Interpreter!?,” Objective-See, December 22, 2021, https://
objective-see.org/blog/blog_0x6A.html.

 6. Objective-See Foundation (@objective_see), “Did you know BlockBlock . . . ,”
X, March 2, 2022, https://x.com/objective_see/status/1499172783502204929.

 7. “ES_EVENT_TYPE_AUTH_EXEC,” Apple Developer Documentation,
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/
es_event_type_auth_exec.

 8. See https://github.com/objective-see/BlockBlock.

https://developer.apple.com/documentation/endpointsecurity/client
https://developer.apple.com/documentation/endpointsecurity/client
https://x.com/PeteMarkowsky/status/1653453951839109133
https://x.com/PeteMarkowsky/status/1653453951839109133
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://github.com/google/santa/blob/8a7f1142a87a48a48271c78c94f830d8efe9afa9/Source/santad/EventProviders/SNTEndpointSecurityTamperResistance.mm#L15
https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware
https://www.uptycs.com/blog/macstealer-command-and-control-c2-malware
https://objective-see.org/blog/blog_0x64.html
https://objective-see.org/blog/blog_0x6A.html
https://objective-see.org/blog/blog_0x6A.html
https://x.com/objective_see/status/1499172783502204929
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/es_event_type_auth_exec
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t/es_event_type_auth_exec
https://github.com/objective-see/BlockBlock

Muting and Authorization Events!!!229

 9. You can read about such attacks uncovered by yours truly in Patrick
Wardle, “Dylib Hijacking on OS X,” VirusBulletin, March 19, 2015,
https://www.virusbulletin.com/blog/2015/03/paper-dylib-hijacking-os-x.

 10. The code in Listing 9-9 is inspired by Jeff Johnson, “Detect App
Translocation,” Lapcat Software, July 26, 2016, https://lapcatsoftware.com/
articles/detect-app-translocation.html.

 11. See https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/
Plugins/Processes.m.

 12. Patrick Wardle, “Demystifying (& Bypassing) macOS’s Background Task
Management,” presented at DefCon, Las Vegas, August 12, 2023, https://
speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background
-task-management.

 13. Phil Stokes, “Backdoor Activator Malware Running Rife Through
Torrents of macOS Apps,” Sentinel One, February 1, 2024, https://www
.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents
-of-macos-apps/.

 14. Jaron Bradley, “Zero-Day TCC Bypass Discovered in XCSSET Malware,”
Jamf, May 24, 2021, https://www.jamf.com/blog/zero-day-tcc-bypass-discovered
-in-xcsset-malware/.

https://www.virusbulletin.com/blog/2015/03/paper-dylib-hijacking-os-x
https://lapcatsoftware.com/articles/detect-app-translocation.html
https://lapcatsoftware.com/articles/detect-app-translocation.html
https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/Plugins/Processes.m
https://github.com/objective-see/BlockBlock/blob/master/Daemon/Daemon/Plugins/Processes.m
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://speakerdeck.com/patrickwardle/demystifying-and-bypassing-macoss-background-task-management
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.sentinelone.com/blog/backdoor-activator-malware-running-rife-through-torrents-of-macos-apps/
https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/
https://www.jamf.com/blog/zero-day-tcc-bypass-discovered-in-xcsset-malware/

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

